Navigation       Home                            Contact                           Link

AMAZONTAGHERE6

 

ARTICLE PREVIEW

How to Get Swimsuit Ready - For Men and Women
Copyright 2009-2015 Joe E. Atlas, Inc. Summer will be here before you know it (in the USA). Will this be the year that you get into amazing bathing suit shape for the beach or the pool? Follow this...read more

How to be your Pool Company's Favorite Customer
How to be your Pool Company's Favorite Customer By taking advantage of a few easy swimming pool maintenance tips, you can easily make yourself the most profitable customer your local pool business...read more

How To Get Rid Of Cellulite: 5 Simple Tips
First of all, you cannot completely get rid of cellulite. I don’t say that to discourage you but rather to encourage you. The reason being that all women have it, even supermodels! That’s right,...read more

HOME >> How To Make Lighter And Thinner Magnesium Components?

 

YOURIMAGEHERE3

How To Make Lighter And Thinner Magnesium Components?
By Ken Yap

 

 

Magnesium is the lightest structural material offering very good damping characteristics, weldability and excellent shielding against electro-magnetic interferance, and is unlimited in supply. It has been an excellent material for making portable electronic and telecommunication devices, and automotive and aerospace equipment such as MD player casings, chassis for cell phones, video cameras and notebook computers, automotive gear housings, car wheels and engine blocks.

The most common methods to produce magnesium parts are die casting and thixomolding processes. However, these runner and gating processes provide a low material yield of only 30% for thin-wall casting and can only produce thin walls of between 0.7mm to 1.2mm.

If we can form magnesium parts from sheet metal just like metal stamping of steel and aluminum parts, we can achieve better material yield of about 80% and possibly safer operation due to the lower processing temperature. However, magnesium is known to be non-formable as it is very resistant to deformation due to its hexagonal close-packed structure. The only way is warm forming of magnesium as deformation of magnesium above 225 degrees Celsius will cause additional slip planes to become operative.

Extensive process research in this area have resulted in a few warm forming hydraulic presses available in the market for draw forming. Recently, research in warm draw forming of magnesium to make cell phone chassis has successfully shown that 0.4mm thin walls can be achieved consistently. Metallographic tests of the chassis have also demonstrated that there is zero porosity and increased rigidity.

While the current warm forming press systems are complicated to operate as they require the preliminary building of stroke and force profiles for the specific products using data acquisition modules and forming simulation softwares, the increased replacement of aluminum and plastics with magnesium for handheld electronic devices may well accelerate this process. Progressive early adopters of this technology would have a first mover advantage in the competitive global manufacturing industry.


About the Author: Author Ken Yap holds directorships in Suwa Precision Engineering which represents precision parts manufacturers from Suwa, Japan (http://www.suwaprecision.com), Attisse Pte Ltd, a business and market research firm (http://www.attisse.com), and SV Tech Pte Ltd which provides sourcing services for PCBs and IC chips from China (http://www.svtch.com).

Source: www.isnare.com

Return to HOME to read more articles
 

RSSTAGHERE4

 

COPYRIGHT © 2009-2015 HOW TO - ALL RIGHT RESERVED

 

CLICKBANKBUDDYTAGHERE5